
Sci.Int.(Lahore),26(5),2157-2162,2014 ISSN 1013-5316; CODEN: SINTE 8 300 2157

INTEGRATION OF REQUIREMENT ENGINEERING WITH UML IN
SOFTWARE ENGINEERING PRACTICES

Abu Buker Siddique
1
, Salman Qadri

1
, Shafiq Hussain

2
, Shabir Ahmad*

3
, Imran Maqbool

1
 and

 Abdul Karim Nawaz Khan
1

1Department of Computer Science, Islamia University Bahwalpur, Pakistan.
2Department of Computer Science, Bahauddin Zakariya University, Sub-Campus Sahiwal, Pakistan

 3Government College of Commerce, Multan, Pakistan

Email: mian_shabbir@hotmail.com (Corresponding Author)

ABSTRACT--The Unified Modeling Language (UML) is now the de facto modeling language widely adopted in software

engineering. UML is used for developing adaptive and customizable systems on the basis of particular requirements. The

main objective of UML practices is to achieve a requirement engineering process in a comprehensive manner. This paper

explores how Use Case can be applied in different project by the team and what types of problems may a software company

face during the implementation. This study is conducted by surveying sixty six numbers of software companies. On the basis

of survey and literature study, improvement suggestions for the Use Case are given in this paper. These suggestions take into

account the different uses of Use Cases in a project as well as the phase in which Use Case is used. The results of this survey

ascertain that Use Cases practices are 89% useful for developers and 97% for clients point of view. The most important

survey’s findings are: (1) that during discussions with clients, Use Cases should be supplied to the user along with interface

prototypes, (2) that companies should make use of related Use Cases and (3) that in Use Cases, user interface has no need of

details.
KEYWORDS: Requirement Engineering, Requirement Specification, UML, Use Case, Software Companies.

1. INTRODUCTION

The concept of Use Cases was first introduced by Ivar

Jacobson in 1987 as a tool for modeling functional

requirements, Jacobson, 2004[1]. The idea was quickly

adopted world-wide as the book Object-Oriented Software

Engineering was published. A Use Case Driven Approach

was introduced by Jacobson et al. 1992 [2] and has remained

an important method for requirements management.

Cockburn, 1997 [3], stated simply how an actor interact with

a computer system to achieve a goal.

A Use Case can be written either by the client, the developer

or by the client and developer as a team. Use Cases connect

many other requirements details and provide scaffolding that

connects information in different parts of the requirements.

They are connected to other requirements as user interface

requirements, user interface details and business rules,

Cockburn, 2001[4].

Regnell et al. developed an approach where use cases are

used to capture requirements [5]. A use case is the

specification of a sequence of actions, including variants that

a system can perform, interacting with actors of the system

[6]. Use cases have become one of the favorite approaches

for requirements capture more so ever since their adoption

by software development approaches such as the Unified

Process [7]. Nebut, Clementine, et al. [8], introduced an

automatic use case driven approach in 2006. The generated

state machines are used as prototypes for requirements

validation by simulation. Because of the automated

generation, prototypes in the approach are obtained from

requirements in a timely manner with little effort. However,

initial applications of the approach brought some requests

for improvement from the users of the approach.

One of these requests is to provide a mechanism that would

facilitate repeatability of simulation sessions. There exist

two principal Use Case notations, i.e. as textual descriptions

and as graphical representations. In this paper we will call

the textual notation as Use Case descriptions, the graphical

representation as Use Case diagrams, and we will use the

term Use Cases as a collective name for both.

2. BACKGROUND

Previous research has investigated the comprehensibility and

application of Use Cases. Some research has been conducted

in a real software development setting while other research

has been conducted on students.

2.1 Previous Research in the Software Industry

This section describes the findings of a survey that identified

how Use Cases are employed in practice are described.

2.1.1 A Survey of Use Cases in Practice

In Use Cases in Practice, the authors attempt to find out how

Use Cases are employed by developers. The most important

result from this survey was that industrial practices place

emphasis on the coupling between Use Cases and user

interface details even though this is not recommended. The

authors suggest using task models as a complementary to

Use Cases. A task model specifies what the user does, or

wants to do, and why, and is similar to Use Cases. In

contrast to Use Cases the tasks in task models are

decomposable into subtask and atomic actions. Based on the

task model, the user interface may be automatically

generated. Another issue was that the participants in this

survey had problems modeling and understanding the

«include», «extend» and generalization relationships, Sinnig

et al., 2005[9].

2.1.2 Problems in Real Projects Using Use Case

Diagrams

This section describes, how to avoid Use-Case pitfalls,

Susan Lilly[10] focuses on problems with Use Case

diagrams based on observations from a number of real

projects. The top ten problem using Use Cases and their

solutions as describes in the table 1.

mailto:mian_shabbir@hotmail.com

2158 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),26(5),2157-2162 ,2014

Top ten problems from real projects

Problem 1:

The system boundary is undefined or inconsistent.

Cure:

Be explicit about the scope, and label the system boundary accordingly.

Problem 2:

The Use Cases are written from the system’s point of view.

Cure:

Name the Use Cases from the perspective of the Actor’s goals.

Problem 3:

The actor names are inconsistent.

Cure:

Get agreement early in the project and establish a glossary to define the actors

Problem 4:

Too many Use Cases.

Cure:

Make sure the granularity of the Use Cases is appropriate.

Problem 5:

The actor-to-use-case relationships resemble a spider’s web.

Cure:

The actors should not be defined too broadly.

Problem 6:

The Use Case specifications are too long.

Cure:

The granularity of the Use Cases may be too coarse.

Problem 7:

The Use Case specifications are confusing.

Cure:

Include a context field in your Use Case specification template to describe the set of

circumstances in which the Use Case is relevant.

Problem 8:

The Use Case does not correctly describe functional entitlement.

Cure:

Make sure that each actor associated with a Use Case is completely entitled to perform it. If an

actor is only functionally entitled to part of the Use Case, the Use Case should be split.

 Problem 9:

The client does not understand the Use Cases.

Cure:

Teach them just enough to understand. Put a short explanation in the document, lead a training

course and think long about using <<include>> and <<extend>>.

Problem 10:

The Use Cases are never finished.

Cure:

Loosely couple user interface details and Use Case interactions.

Table 1. Problems from real projects

2.2 Empirical Research Conducted on Students

Several researchers have conducted experiments on students

to study the Use Case technique.

2.2.1 Other Researcher’s Empirical Research

Anna Bobkowska has reported some problems regarding

Use Case diagrams. Among these were the stick-man

notation that are not intuitive to use for representing

computers and that the direction of the «extend» and

«include» arrows are confusing, Bobkowska, 2005[11].

In Quality and Understandability of Use Case Models, the

authors perform an experiment on students with the aim to

detect effects of guidelines when writing Use Cases. The

result from this experiment indicated that guidelines based

on templates constructs Use Cases that are easier to

understand than guidelines without specific details on how

to document each Use Case, Anda et al., 2001[12].

3. METHODOLOGIES OF REQUIREMENT
ENGINEERING

Different methodologies are used in requirement engineering

as follows:

3.1 Use Case Brief

The most important advantage of Use Cases is that they

describe a system in a manner that all stakeholders can

understand. They are therefore used as a contract between

stake-holders for the behavior of the computer system,

Cockburn, 2001[4]. As a user-centered technique, Use Cases

capture the requirements from the user’s point of view,

ensuring that the correct system is developed. Other benefits

of using Use Cases are their usefulness in estimating,

scheduling and validating effort, and that test cases can be

directly derived from them. Use Cases contain a description

of things that might go wrong, and projects benefit from

having exceptions identified early because it saves time later

in the project, Firesmith, 1995[13].

3.2 Casual Form

An informal way of writing a Use Case is as a narrative,

called Casual form. The Use Case is written in prose and

describes at a high level how an actor interacts with the

system to accomplish a goal.

Sci.Int.(Lahore),26(5),2157-2162,2014 ISSN 1013-5316; CODEN: SINTE 8 300 2159

3.3 UML Use Case Diagrams

The Use Case formats described so far, are all versions of

Use Case descriptions. Now we describe UML Use Case

diagrams in detail [14, 15, 16]. UML Use Case diagrams

consist of actors and use cases (ellipses) which are

connected by a link or a specific relation. The most common

relations, in addition to the normal links, are «include»,

«extend» and generalization. Figure 1 illustrates a Use Case

with normal links and the «include» and «extend» relation.

Figure 1: Use Case Diagram

3.4 Other Requirements Engineering Techniques

This section gives an overview of two other techniques used

in requirements engineering. These techniques are User

stories and SRS.

3.4.1 User Stories

A user story describes functionality that is valuable to a user

of a system. User stories were first introduced in eXtreme

Programming (XP) as a way of expressing requirements.

The story is hand-written on a card. This card is the visible

manifestation of the User story, but the conversation where

the details are worked out is the most important.

3.4.2 Software Requirements Specification

IEEE has developed a standard for how to write a good

Software Requirements Specification (SRS) [17, 18] In this

standard the system is described as a set of "The system

shall"-sentences that focus on what functions the system

shall support, in contrast to Use Cases that describes how the

system is used by a user. Writing requirements compliant to

this standard often result in tedious and boring reading. This

might result in the specification not being read carefully

enough, and the project team not getting enough information

about the requirements from the client, Cohn, 2004[19]. The

IEEE framework for the requirements specification is

especially appropriate in classic models of the software

development process; the waterfall model and its variants,

Vliet, 2000[20, 21, 22].

4. OPERATION OF USE CASE

Operations of Use Case are for operation of the surveys.

These operations are used for the preparation and execution

of the surveys.

4.1 Operation of the Survey

This section describes the preparation, execution and data

validation of the survey.

4.1.1 Preparation

Before sending the survey out, two persons read through the

survey to reveal vagueness in the question wording. We

received a list of company names from a students. This list

was used to find contact information on the Internet. We

emailed this survey about sixty six companies.

4.1.2 Execution

The survey was written in Microsoft Word, so the

respondents had to fill out the Word document and email it

back to us. We received thirty eight replies from sixty six

companies. We do not know the exact time they spent on it,

but we believe it took approximately ten to fifteen minutes

to answer, depending on how much complementary text

each person wrote.

5. DESIGN OF THE SURVEY

This section describes how the survey is related to the
research questions and how it meet the survey objectives.
The survery objectives and the survery questions are
describe in the table 2.

Survey Objectives

Investigate how Use Cases are applied in the

software industry and how well the technique

works for different purposes. In addition,

investigate how the Use Case technique can be

improved based on developers and clients

experience with Use Cases.

Survery Questions

RQ1

When is it appropriate to apply Use Cases?

RQ2

For what purposes are Use Cases applied?

 RQ3

How well did Use Cases work in a specific

project?

RQ4

Do Use Cases work well in discussions with

clients?

RQ5

What is difficult and what is simple about Use

Cases?

RQ6

How can we improve the Use Case technique?

Table 2 presents the survey objectives and survey questions

5.1 Personal Information and Information about the

Company

The first part focused on personal information and
information about the company. The respondents were asked
to fill in their name, although this was optional. They were
also asked to fill in the name of the company, their position
in the company, and the number of years spent in the
industry.

5.2 Application of Use Cases in the Company

This part was related to RQ1 When is it appropriate to apply
Use Cases? and RQ2 For what purposes are Use Cases
applied?. The first question was an open question about
what other responsibilities the person(s) who write Use
Cases have. In the survey the respondents were asked
whether they would have preferred a specialized tool for Use

2160 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),26(5),2157-2162 ,2014

Cases. Then they were asked to check for client
representatives, developers or testers to the question on what
persons Use Cases were primarily written for. If the
respondents had written Use Cases him or herself, he or she
was asked to describe how they proceeded when writing
them. The last question in this part was about how many
pages an average Use Case is.

5.3 Use Cases as a Tool for Communication with the

Client

This part was related to RQ4 Do Use Cases work well in
discussions with clients? On a scale from one, I strongly
disagree, to five, I strongly agree, the respondents were
asked to consider seven assertions about how appropriate
Use Cases are as a tool for communication with client
representatives.

5.4 Personal Opinions about Use Cases

This part was related to RQ1 When is it appropriate to apply
Use Cases? and RQ5 What is difficult and what is simple
about Use Cases? The respondents were asked to consider
eight assertions about things that are difficult about Use
Cases on a scale from one, I strongly disagree, to five, I
strongly agree. Then they were asked to consider on the
same scale in what types of projects Use Cases should be
used: development of completely new systems, further
development of old systems, Internet portal projects, and
projects where one works near the client representatives. The
last section of this part focused on how many times the
respondent had experienced problems with Use Cases: I
have experienced that we have spent so much time on the
Use Cases in the beginning of a project that when the
development started, the Use Cases have become irrelevant,
I have experienced that Use Cases have become so extensive
that I did not bother to read through the whole Use Case, and
so on. The alternatives to these questions were Never
experienced, Experienced once and Experienced two times
or more.

5.5 Personal Experience with Use Cases

Part five was related to RQ1 When is it appropriate to apply
Use Cases? and RQ5 What is difficult and what is simple
about Use Cases. It contained two open questions. The first
was: Please describe some positive experience with Use
Cases, and the second was: Please describe some negative
experience with Use Cases.

5.6 Improvement Suggestions to the Use Case Technique

Part six was related to RQ6 How can we improve the Use
Case technique?. On a list of five improvement suggestions
for the Use Case technique, the respondents were asked to
check the suggestions that they thought would have been
useful.

6. RESULTS FROM THE SURVEY

This section presents the results from the survey. The results

are presented according to the research question where they

belong.

6.1 General Information about Use Cases

The respondents were asked whether they write Use Case

diagrams, Use Case descriptions or a combination of both.

Figure 2 shows the distribution of answers.

Figure 2. Types of Use Cases applied

All participating companies seemed to have similar

procedures for writing Use Cases. They arrange meetings or

workshops with the client or the users where the primary

goal is to find the actors and goals. Based on this

information an overall Use Case diagram is written and from

this diagram all Use Case descriptions are identified and

prioritized.

6.2 Summary of Results

Table 3 presents the most important results for each survery

question.

RQ1 When is it appropriate to apply Use Cases?

 89%

Agreed that it is appropriate to apply Use Cases

when developing completely new system.

64%

Agreed it is appropriate to apply Use Cases when

developing Internet portals.

RQ2 For what purposes are Use Cases applied?

 86%

Apply Use Cases for structuring the requirements

specification.

86%

Use it for estimation.

82%

Use it for programming.

68%

Use it for creating test cases.

RQ3 How well did Use Cases work in a specific project?

94%

Testers thought the Use Case descriptions worked

well.

RQ4 Do Use Cases work well in discussions with

clients?

 97%

Agreed that a prototype of interfaces should be

used in addition to Use Cases, because the client

needs a picture of what the system is going to

look like.

 64%

Agreed that Use Case is a good technique for

communication with clients that are not so

familiar with IT-technology.

75%

Disagreed to the assertion that clients think Use

Cases are futile.

RQ5 What is difficult and what is simple about Use

Cases?

Sci.Int.(Lahore),26(5),2157-2162,2014 ISSN 1013-5316; CODEN: SINTE 8 300 2161

66%

Agreed that it is difficult to find the right level of

detail that suits developers, tester and the client.

61%

Disagreed that it is difficult to write Use Cases.

RQ6 How can we improve the Use Case technique?

 71%

Agreed that it would be useful with a tool that

makes it easier to get an overview of related Use

Cases.

63%

Agreed that it would be useful with a

standardization of layout and content in the Use

Cases.

7. RESULTS AND DISCUSSIONS

This section discusses the results that we got from our

surveys and relates them to previous research. Based on the

results we conclude with a list of suggestions of how the Use

Case technique can be improved.

7.1 When is it appropriate to apply Use Cases?

Result: When developing completely new systems.

Discussion of result: According to our results, Use Cases

are appropriate to employ when developing completely new

systems, and not that appropriate when developing further

on existing systems. The reason for this is that for existing

systems much of the specification is already written down

and making Use Cases would be superfluous.

7.2 For what purposes are Use Cases applied?

Result: For structuring the requirements specification,

estimating, programming and constructing test cases. Less

commonly, it is also used for system documentation, writing

user documentation, preparing courses and testing directly

from Use Cases.

Discussion of results: The results show that most of the

companies employ Use Cases for structuring the

requirements specification and for estimating projects. Many

also use it for programming and to create test cases.

7.3 How well did Use Cases work in a specific project?

Result: For the purpose of testing from the scenarios in the

Use Case descriptions, the testers thought the Use Case

descriptions worked well, but the Use Case descriptions

became long and too detailed according to the developers.

Discussion of result: We got the impression that this way of

applying Use Cases worked well in this project. The project

leader stated that she was pleased with the implementation

of this particular project. The reason for the success was that

one person had full responsibility for the Use Case

descriptions. The testers were also pleased with the Use

Cases because they were easy to read and made it easy to

know what to test. A drawback with this use was that the

Use Case descriptions became long and hard to keep

updated.

7.4 Do Use Cases work well in discussions with clients?

Result: Yes, if used together with user interface prototypes

and written in a language that the client understands.

Table 4. Suggestions for how to improve Use Cases

 Suggestions for how to improve Use Cases

Suggestion 1: Make use of a tool that makes it easier to get an overview of related Use Cases and other documents.

How to: Create a Wiki where you relate interfaces, business rules, Use Cases etc.

Suggestion 2: Do not emphasize too much on writing extensive Use Cases in the beginning of the project.

How to: Start with Use Case briefs or Casual form, and expand the Use Cases into fully dressed versions later in the

project.

Suggestion 3:

Standardize your Use Cases.

How to:

Set clear directions for the layout and the content of the Use Cases.

Suggestion 4: Avoid unnecessary changes in the Use Cases when the user interface design changes.

How to:

Do not write details about the user interface in the Use Cases.

Instead, create a low fidelity prototype of the interface in addition to the Use Case.

Suggestion 5:

Maintain the Use Cases throughout the project.

How to: Make sure one person has the full responsibility for updating and maintaining the Use Cases.

Suggestion 6:

Use terms in a consistent way.

How to: Create a glossary of terms for the requirements document that is used in a consistent way.

Suggestion 7:

Make sure your client understands the Use Cases properly.

How to: Provide a user interface prototype in addition to your Use Cases and provide training courses for your clients.

Suggestion 8:

Get more than one point of view when writing Use Cases.

How to:

Make sure at least two persons write each Use Case.

2162 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),26(5),2157-2162 ,2014

Discussion Of Result:
The opinions on Use Cases as a tool for communication are

divided. Some developers think that Use Cases should be

used primarily as a tool for communication, while others

believe Use Cases should not be used for this purpose at all.

Either way, the most evident result of this study is the

following: A prototype of the inter-face should be used in

addition to the Use Case when you communicate with the

client. This does not, however, imply that prototypes can

substitute Use Cases.

7.5 How can we improve the Use Case technique?

Based on the results from this study, we have made a list of

suggestions for how to improve Use Cases in Table 4.

8. CONCLUSION
Use Case plays an increasingly important role in

requirement engineering and software development. Based

on a number of industrial survey and case studies, we have

proposed different suggestions. These suggestions take into

account the different uses of Use Cases in a project as well

as the phase in which Use Case is used.

We relate these Use Cases practices for developers and

clients point of view, although it is hard to get clear, precise

answers to the question about in what projects Use Cases are

appropriate to use. The answers were quite superficial: Use

Cases are appropriate to apply in large projects, web projects

and in projects where completely new systems are

developed.

Recently, research has been carried out to investigate how

UML can be used in the testing phase of the software

development process. As a result, a number of UML-based

coverage criteria have been proposed in the literature. These

criteria are based on coverage of elements of UML

diagrams. In this paper, these UML-based criteria are

surveyed. For each of the criteria a formal definition is

presented which is necessary to facilitate a comparison of

the criteria. It has been found that relatively little work has

focused on empirically investigating how effective the

criteria are at detecting faults. Furthermore, no research has

been carried out to show how the various criteria relate to

each other in terms of the coverage they provide. Therefore,

it is believed that these are important topics for future

investigation.

REFERENCES
1. Jacobson, Ivar. "Use cases–Yesterday, today, and

tomorrow." Software and Systems Modeling Springer

3(3): 210-220(2004).

2. Jacobson, Ivar. "Object oriented software engineering: a

use case driven approach." (1992).

3. Cockburn, A.: 1997, Structuring Use Cases with goals,

Journal of Object-Oriented Programming, SIGS

Publications, Nov-Dec 1997.

4. Cockburn, A.: 2001, Writing effective use cases, Addison-

Wesley.

5. Regnell, Björn, Kristofer Kimbler, and Anders Wesslen.

"Improving the use case driven approach to requirements

engineering." In Requirements Engineering, 1995.,

Proceedings of the Second IEEE International Symposium

on, pp. 40-47. IEEE, (1995).

6. Dumas, Marlon, and Arthur HM Ter Hofstede. "UML

activity diagrams as a workflow specification language."

≪ UML≫ 2001—The Unified Modeling Language.

Modeling Languages, Concepts, and Tools. Springer

Berlin Heidelberg, 76-90(2001).

7. Jacobson, G. Booch, and J. Rumbaugh. “The Unified

Software Developm ent Process”Addison Wesley, 1998.

8. Nebut, Clementine, et al. "Automatic test generation: A

use case driven approach." Software Engineering, IEEE

Transactions on 32(3): 140-155 (2006).

9. Sinnig, D., Rioux, F., and Chalin, P.: 2005, “Use Cases in

Practice: A survey”, http:

//www.dsinnig.com/pdfs/CUSEC05_Sinnig.pdf

10. Lilly, S.: 2001, How to Avoid Use-Case Pitfalls, Software

Development Magazine

11. Bobkowska, A.: 2005, A Methodology of Visual

Modeling Language Evaluation, Springer-Verlag Berlin

Hedelberg 2005.

12. Anda, B., Sjøberg, D., and Jørgensen, M.: 2001, “Quality

and Understandability of Use Case Models”, Springer-

Verlag.

13. Firesmith, D. G.: 1995, “Use Cases: the Pros and Cons”,

ROAD, 2(2): 2-6(1995).

14. Regnell, Björn, Kristofer Kimbler, and Anders Wesslen.

"Improving the use case driven approach to requirements

engineering." In Requirements Engineering, 1995.,

Proceedings of the Second IEEE International Symposium

on, pp. 40-47. IEEE, 1995.

15. Van Lamsweerde, Axel. "Goal-oriented requirements

engineering: A guided tour." In Requirements

Engineering, 2001. Proceedings. Fifth IEEE International

Symposium on, pp. 249-262. IEEE, 2001.

16. Azam, Farooq, et al. "Framework Of Software Cost

Estimation By Using Object Orientated Design

Approach." IJSTR 3(8): 97-100(2014).

17. Porter, Adam A., Lawrence G. Votta Jr, and Victor R.

Basili. "Comparing detection methods for software

requirements inspections: A replicated experiment."

Software Engineering, IEEE Transactions on 21.6.1995:

563-575(1995).

18. Baloch, Muhammad Perbat, et al. "Comparative Study of

Risk Management in Centralized and Distributed Software

Development Environment." Sci.Int.(Lahore), 26(4),

1523-1528(2014).

19. Cohn, M.: 2004, Advantages of User Stories for

Requirements, Prentice-Hall

20. Vliet, H. V.: 2000, Software Engineering, Principles and

Practice, Wiley

21. Ahmad, Shabir, and Bilal Ehsan. "The Cloud Computing

Security Secure User Authentication Technique (Multi

Level Authentication)." IJSER 4(12): 2166-2171 (2013).

22. Nuseibeh, Bashar, Jeff Kramer, and Anthony Finkelstein.

"A framework for expressing the relationships between

multiple views in requirements specification." Software

Engineering, IEEE Transactions on 20.10 (1994): 760-

773.

